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Autoresonant excitation and evolution of nonlinear waves: The variational approach
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It is shown that a large class of multidimensional nonlinear waves can be excited and controlled in adia-
batically varying systems driven by an externally launched pump wave. The excitation proceeds via the
trapping into the resonance, while later the nonlinear wave evolves by being phase locked with the pump wave
in an extended region of space and/or time despite the variation of system’s parameters. This automatic phase
locking (autoresonangeyields a possibility of shaping the parameters of the nonlinear wave by varying the
nonuniformity and/or time dependence of the parameters of the system. The multidimensional theory of the
autoresonance for driven nonlinear waves is developed on the basis of the averaged variational principle and is
illustrated by an example of a driven sine-Gordon equafi8da063-651X97)04202-5

PACS numbdps): 03.40.Kf; 52.35.Mw

I. INTRODUCTION U — C%Uy,— f(U,q)=€b cosy, )]

Autoresonance is best known as a persisting phase lockwhere the right-hand sidéRHS) represents arexternally
ing between resonantly driven nonlinear oscillators and driviaunchedlinear eikonal pump wave, and<1 is a small
ing oscillations when the parameters of the system vary adigdimensionless coupling parameter. We assume that the am-
batically. The essence of the phenomenon in this case is thdilitude b(,t), wave vectorK(f,t)=D¢, and frequency
under certain conditions, if started in resonance, the nonlin@(f',t)=— ¢ of the pump wave, as well as the velocity
ear oscillatorautomaticallyadjusts the amplitude of oscilla- @nd the parametey on the left-hand sideLHS) of Eq. (1),
tions (and therefore also its frequencgnd continuously re- @l are given slowfunctions of space-timeg(We shall also
mains in an approximate resonance with the driver despit8SSUmMe the existence of an additional small dimensionless

the variation of system’s parameters. In early studies, th@diabaticity parameter<1 in our problem characterizing

autoresonance idea was used in relativistic particle acceler _f|fhslovvtvar|at|om. C_)ut[r?oal ISt to |3vest|%atde tt)he pos§|bll|ty
tors [1-4]. More recently, many other applications of the of theautoresonancén the system described by E@). i.e.,

autoresonance can be found in the literature. Those incluo%]e regime when the nonlinear wave represented by the LHS

controlled excitation of atomf5] and dissociation of mol- Of Eq. (1) is phase locked with the pump wave. We shall not

les(6] licati . i q i8—9] and limit ourselves to Eq(1) only, but consider the autoreso-
ecules o), applications in noniinéar dynamigg—31 and un- 5466 jn more general nonlinear wave evolution problems

conventio_nal particle acceleratdrk0,11], aut_oresonant exci- described by the variational principlé,(f < df dt)=0,
tation of intense plasma wavgs2] and solitong13], and, \\here the integration is overfmite region of space-time and
finally, autoresonant mode conversipt¥] and three-wave
interactions[15]. Despite the variety, all these studies were L=L(ug,uy,uy,U;,u,q)+ebu cosp. 2
essentially reduced to the aforementioned one-dimensional
driven nonlinear oscillator problem. In autoresonant waveThis Lagrangian yields the variational evolution equation
interaction problem$12-15 such a reduction was possible
by assuming either only time or one spatial dependence ofi(Ly)+di(Ly ) +dy(Ly ) +d,(Ly)—L,=eb cosp.  (3)
the parameters of the system. Nevertheless, recently, it was
shown that the one-dimensionality assumption is not alwaygThe Klein-Gordon equation cagd) corresponds td. =3
necessary and, in some cases, the autoresonance is charac(taf—— 02u§)+ff(u,q)du.]
istic of multidimensional wave interactiorj46]. This work The purpose of this work is to construct tlageraged
demonstrated that if an adiabatically varying medium carvariational principle for studying autoresonance effects as-
support a number of waves and one of the waves is excitesociated with Eq(3). The idea of the averaged variational
externally(the pump waveand launched towards the region principle was developed by Whithafi7] in the theory of
where it can resonate with another watlee daughter waye = modulations of nonlinear waves. The slowness of modula-
then, under certain conditions, the daughter wave is excitetions is an essential assumption of Whitham’s averaging
in the medium and remains in autoresonance with the pummethod. The possibility of applying a similar approach to
wave despite the multidimensionality of the problem. How-autoresonant wave interactions is based on the conjecture of
ever, Ref.[16] was limited to the case afieaklynonlinear the existence and slowness of the evolutioraoforesonant
waves. nonlinear waves. Finding the conditions for entering and sus-
In the present work we shall develop a theory of the autaining such solutions of E43) comprises the main goal of
toresonant excitation and evolution of a class of multidimenthe present work. The variational approach guarantees the
sional nonlinear waves(r,t) described by the variational generality of our theory and allows the use of many ingredi-
principle. An example is the driven Klein-Gordon equation ents of Whitham'’s theory of adiabatic modulations.
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Our presentation will be as follows. In Sec. Il, as a pre-where (--)7=(--+)1t+(:--)pA7, which after the substitu-
liminary step, we shall construct the averaged variationation into Eq.(4) yields
principle for a driven adiabatic oscillator. We shall present
the main steps of the averaging procedure in this one- wlig—Lot+elir=eb coq ¢+ ¢p). (6)
dimensional application and compare the results of the aver-
aged variational approach with those based on the HamiHere Lo=L,, L;=L,, and the arguments inq, are

tonian formalism and. used previ_ously in studying the wUy+eU%,U,q). At this stage, following Whithanj17]
autoresonance in nonlinear dynamics. In Sec. Ill we shalye start treating the variablgsand T in Eq. (6) asindepen-
discuss the trapping into the resonance and the autoresgent Then, since, originallyy(t)=U(,T) is a function of a
nance conditions in the driven nonlinear oscillator case andjngle variable, we have the freedom of adding an additional
illustrate the theory in the case of an adiabatically drivenggyation to our problem. One must choose this equation so
nonlinear pendulum. In Sec. IV we shall generalize themhat the solutioru(t)=U(6,T) has the desired overall time
theory for apphcapons to multidimensional nonlinear waves.gependence. The convenient method for achieving this goal
In the same section we shall also present a nume_rlcal ®fs by assuming 2 periodicity of U with respect toé for
ample of a driven sine-Gordon equation. Section V gives OUfijxed T. The reasoning behind this assumption will be given

conclusions. below, when we shall identify as the canonical angle vari-
able of the corresponding unperturbed oscillator problem.
Il. AVERAGED VARIATIONAL PRINCIPLE In order to exploit the periodicity assumption, we multi-

FOR RESONANTLY DRIVEN DYNAMICAL SYSTEMS ply Eqg. (6) by U, and rewrite its LHS in the form of a

conservation law
In this section we shall consider the dynamics of adiabatic
driven nonlinear oscillationsi(t) characterized by the La- (wUgL1—L)y+e(Uyly)r=ebUycod 6—A+ i), (7)
grangian of form £L=L[u,(t),u(t),q(t)]+eu(t)b(t)cod
+ ], where =] L (t)dt and yy(t) is a givenslow phase  where(see aboveA(T)=6— is the slow phase mismatch.
modulation of the driver. Thus we study solutions of theNow we average Ed.7) with respect tod over the period of
one-dimensional evolution equatipsee Eq.(3)] 2, holding T fixed. This yields

dt(ﬁut)_ﬁuzsb cos ¢+ ). (4) dl;/dT=b(Uy(8,T)cog 60— A+ iy]), (8)

wherel ((T)=(U,L,) and(---)=(1/2m) [3"(---)d 6. The peri-
We have defined two small parameters in our problem, i.e.odicity of U also allows us to expand in the Fourier series
the adiabaticity parametee and the coupling constant.  U(6,T)=X,a,(T)exp(né), a_,=aj, and complete the
Although, in principle £ andu are independent, we shall see averaging on the RHS of Eg8),
in Sec. lll that in the autoresonaneemust be thdarger of
the two parameters. Consequently, the following theory is dl,/dT=—ab sin(A+ 6,— ), 9
O(e) perturbation analysis. It is known that the autoreso-
nance phenomenon in the one-dimensional problem dewherea(T)=|a,| andfy(T)=arga,). Equations(7) and(9)
scribed by Eq.(4) can be dealt with by using the conven- comprise a complete set for the two unknown functions
tional Hamiltonian approaclisee, for example, Ref5]). U(6,T) andA(T) in our problem.
Nevertheless, this method is not suitable for applications to Now we further exploit the idea of using variablésnd
multidimensional driven nonlinear wave systems. Therefore] independently and observe that H) can be also ob-
in this section we shall develop an alternative approachained from the variational principle
based on the averaged variational principle and apply it first 1 2
to driven dynamical systems and lai@&ecs. IV and V to g ,
autoresonant wave evolution problems. 5Uf 27 Jo [L{wUpteUr.U.0)

We proceed by introducing a two-scale representation of
the solution, i.e., writai(t)=U(6,T). HereT=s¢t is a slow +ebU cog6—A+p)]de dT=0 (10
variable representing the effects of the presence of the driver
and of the adiabatic variation af, b, ¢, andw, which all ~ 0Of
are assumed to be functions ®f On the other hand, the
angle variabled represents the phase of the nonlinear oscil- 5Uf (£)dT=0, (12)
lations and we shall assume that it can be writte-ags(t)
+A(T). In other words, on the fast scale, the phase is locked
on that of the driver, but we also add a slow modulatom ~ Where
6. Consequently, the frequency of the nonlinear oscillations
O =do/dt=w(T)+eA+, to leading order, is the same as the
frequency of the driver. Conditions for the validity of the
phase-locking assumption will be outlined in Sec. III.
By differentiation,

(L)y={(L)+eab cogA+ 6y~ ig). (12

Equation(1l) is the exact form of Whitham’sl7] averaged
variational principle for applications to resonantly driven
phase-locked oscillations. It reduces the problem to varia-
tional equations associated with the averaged Lagrafgian
U=wUy+eUr, (5)  depending on slow variables only. The variational principle
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(10) is exact and involves variation of the functional within a where a(l,q)=|a,| and 6,(1,q)=arga,). This step is the

class of functiondJ (6, T) periodic with respect t@. Further  usual single resonance approximation of the theory of the

progress in the theory can be made by restricting this class afonlinear resonandel9], which assumes that the neglected

functions via the following perturbation analysis. rapidly oscillating terms in the Hamiltonian have a negligible
As a first step, we observe that our problem is simplifiedeffect on the dynamics. The Hamiltonigh8) yields the evo-

significantly if one neglects themallterm ¢U+ in the first  lution equations

argument ofL in Eq. (10), i.e., considers the problem given

by the approximatevariational principle I =—3d4H=—eabsin(A+ i),
1 (on 0=w=0aH=00(1,q)—sab cogA+ 0o~ 1), (19
5UJ o [L(wU,.U.q) W=7 o(l,q)—ea g o= o), (19
0

whereQy=4,A(l,q) is the frequency of the unperturbed os-
+ebU cog 0—A+p)]do dT=0. (13  Ccillator. One can see that, within the zeroth-order approxima-

tion, I1=1(T) and, consequently, the zeroth-order solution
The variational evolution equation for this problem is U=U(#6,l,q) has the desired overall time dependence, i.e.,
U is periodic with respect to the fast variabfeand has a
wlf,~LY=eb cog 6—A+yyp), (14 parametric dependence on the slow time wid, andq.
0 ) . At this stage, we return to our exact variational principle
whereL"=L(wU,,U,q). Later, solutions of Eq(14) will (10, where we choos¥ to be in the vicinity of the zeroth-

serve as a zeroth-order approximation in the exact variationgjrder approximation, i.e.,
principle (10). Note that this is not a usual perturbation
scheme in terms of since we have left the driving term in U(e,T)y=U%6,1(T),q(T)]+eUX0,T)+0(e?), (20
Eq. (13). If the oscillator is not excited initially, this term is ) _ _
important and dominates during the initial evolution stagel)” representing the zeroth-order solution discussed above.
(see Sec. ). Now one can show that, t@(e), the averaged Lagrangian

In contrast to(6), Eq. (14) is a second-ordeordinary (L) in our original problem depends dn° only. Indeed, to
differential equation fotJ(6,T) as a function ofg, while T O(e),
plays the role of dixedparameter and enters vigb, w, ¢, _ 0 ,0 1,10 1
and A evaluated at their values at tinffein our exact prob- L=L(wUzteUr+ealyU +eUnq)
lem. A convenient way of finding solutions of E(L4) hav- +ebU° cog — A+ i) (21)
ing the desired periodicity properties is by using the Hamil-
tonian  formalism. We introduce the notation or, by expansion,
U=9dU/gt=wU,, define the usual generalized momentum
P=L%U,U,q), use this definiton to express L=L°+&[(U°+wULLI+ULI+bU° cod 6— A+ )]

U=F(P,U,q), and construct the Hamiltonian (22
H(P,U,T,t)=wU,L9-L° Then, on averaging oved, we find
=FP—L%F,P,q)—&bU cog 6(t)— A+ . (Ly=wl —A+e[(UIPLY) + (wUILI+ ULY)
(15 +a% cog A+ 63— o)1, (23

Finally, we transform fronP,U in Eq. (15) to the canonical
action-angle variablek 0 of the unperturbed oscillator. Note
that we identify§ with the cyclic variable in our variational <|_0>: wl —A, (24)
principle. Thus we writdJ =U(#4,1,q), P=P(6,1,q), where

[18] I(A,q)=(27) $P*dU and P*=P*(U,A,q) is the  obtained by averaging in E416). Next we calculate
solution of

where we used

2w

Obviously,A is the energy of the unperturbed oscillator and, = (Ul( — wL(l)le |_8)>_ (25)
using the definition ofl, we can also writeA=A(l,q). In
terms of the canonical variables, the Hamiltonid®) be-  Thus, because of E¢14), (wU L9+ UL J)~0(e) and in-

comes deed the effect ob)? in (£) is of O(¢?). Finally, instead of
the actionl =1(A,q), we now view the energ@ as the de-
H(6,1,0,T)=A(l,q) —ebU(8,1,q)cod 6— A+ ip]. pendent variable and writeU1°L9)=A1l + Ar(USLY) + «,

A7 where a=qr{UILY). Then, t0O(e), and by omitting(for
simplicity) the superscripts denoting the zeroth-order solu-

The next step is to expand(6,l,q)==,a,(l,g)exp(in6) tion. we have

and leave only the resonant tem1 in the interaction part
of the Hamiltonian. Thus we consider the dynamics given by (L)=(w+eA) —A+e[A(UL,) +

H~A(1,q)—eab cog A+ 6,— i), (18) +ab cog A+ Op— )] (26)
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Expression(26) is the main result at this stage of the present understanding of the trapping into resonance fol-
theory. We see that, t®(e), the averaged Lagrangian is a lowed by the autoresonant evolution in driven dynamical
function of A(T), A(T), and other slowbut known param-  systems. Such a summary is necessary not only for com-
eters of the problem, i.e(L)=L[A(T),A(T),T]. Thus the pleteness, but also because many results of this theory can be
averaged variational principlel1) becomes used in studying the autoresonant excitation and evolution of
nonlinear wavegsee Sec. V.

5f L[A(T),A(T),T]dT=0. 27)

) ) IIl. PHASE LOCKING AND DYNAMIC AUTORESONANCE
This equation must be supplemented by E®), where, to

the desired order, one can repldgeby I, yielding The phase-locking phenomenon in the dynamical system
considered in the preceding section corresponds to the situ-
| \Ar=—10r—ab sin(A+ 6— ). (29) ation when the phas@ [see E@s.(31) and (32)] varies

slowly and remains bounded despite the time variation of the
One can view this equation as defining the slow phase miggarametersd,w,b). One possibility for such a phase locking
matchA(T) and thereforéd(T) remains the only free func- corresponds to the case when one can neglect the interaction
tion in the functional in Eq(27). By taking the variation in  term and the small factoy on the RHS of Eq(32) and, at
Eq. (27) with respect toA, definingd=A+6,— ¢, and using  the same time, the difference-lwl ,=1,(Q,— o) is small

the identity during the interaction, i.e., the system automatically adjusts
its nonlinear frequency to remain in the approximate reso-
apt A (UL )a—(UaL1)r=07{U,L4}, (29 nance continuously. We shall refer to this situation as to the
dynamic autoresonand®] (DAR) in the following. In addi-
where the averaged Poisson brackets dtd,L;}= tion to the DAR, there also exists another important situa-
(Ugl1a—Ual4q), we obtain tion, when the difference-dwl 5 in Eq. (32) is of O(1), but,
despite the smallness ef the interaction term on the RHS
(w+eA7) o= 1+e[q{U,L,} +bascosb of Eqg. 10(32) is sufficiently large to nearly canceHwl 4 .
One finds[14] that this is a generic situation if, initially, the
—ba#yasind]=0. (300  system starts out of resonance, i84—w~0(£)), but the

oscillator is not excited significantlju<1). The initial inter-
Now Eg.(30) can be interpreted as the evolution equation foractign stage, in this case, can be treated withitinaar
the slow phase mismatch(T), while Eq.(28) becomes the  theory and the functiona on the RHS of Eq(32) is the
evolution equation foA. Remarkably, one can also obtain gmplitude of these linear oscillations. Tharscales a#\*?
Eq. (28) by using the same variational principl@7), but  and therefore,~A~?is large during the initial excitation
taking the variation with respect td. Thus the evolution stage. It was found in Ref14] that this large factor in Eq.
equations(28) and (30) are unified by asingle variational (32 |eads to the phase locking in the system followed by the
principle. Finally, we return to the original time variable gutomatic cancellation of the term-Il , on the RHS in Eq.

t=T/e and rewrite Eqs(28) and(30) as (32). The cancellation continues until, due the variation of
the driving frequency, the system approaches the resonance
| JA=B—eab sin®, (3D and 1- wl ,=1,(Qp— w) becomes small at some time mo-

mentt,. Beyondty, the energyA of the oscillator is suffi-
ciently large, so the interaction term in E(2) becomes
unimportant and the system enters the DAR stage. Another
important resulf14] is that, if the above-mentioned trapping
into resonance starts sufficiently far from the resonance, it
leads to astrong phase locking in the initial DAR stage. In
B=—0lq, other words, at the beginning of the DARR oscillates
around O or w(mod27), depending on whether
¥=1a(0t00q— tor) — A{U, L} (33 ari(1-wl)—+0 or —0 as one approaches the linear
resonance, while the amplituded of these oscillations is
Equationg31) and(32) comprise a complete set of evolution relatively smallA®<7. This strong phase-locking effect is
equations for studying the dynamic autoresonance in the syslescribed in Ref14] so we shall not present its details here
tem. These evolution equations can be obtained directly alsand proceed directly to the DAR.
from the conventional Hamiltonian formalism. In fact, they = Assume that, at=t, (the initial stage of the DAR the
were used in previous studies of the autoresonance in nomsystem is strongly trapped in the resonance in the vicinity of,
linear dynamicy(see, for example, Ref$§5-9]). Neverthe- say,®(mod 27)~m, while 1-wl ,<1 (Qy~w). Then, under
less, here we have derived the evolution equations via theertain conditions, one finds that, for-t,, the system of
averaged variational principle and all the steps in this deri{31) and (32) evolves so thafA and® perform small oscil-
vation are generalizable to driven multidimensional wavelations around slowly varying averages such that the differ-
problems, the study of which is the ultimate goal of theence *wl, remains small continuously, i.e., the system re-
present work. We shall postpone this generalization untiimains in the DAR regime. Indeed, we seek solutions of Egs.
Sec. IV and devote the next section to the summary of ouf31) and(32) in the form

IaP=1—wla+y—easb cosb, (32

where



A()=A(1)+ 6A,

O (t)= 7+ D(t) + 5D, (34)
where 5A and ¢ are the assumed smallsA/A|,|8D|/w<1)
oscillating parts of the solutions, whilé and =+® repre-
sent the slowly varying averages. We also assumedthatr.
Then we can linearize Eg$31) and (32) and write the fol-
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which, in the cas&\®~0(1), can be identified as theod-
erate nonlinearityconditions of the theory of the nonlinear
resonancg¢19]. The smaller the amplitudA®d of the oscil-
lations, the easier it is to satisfy E@2), which in combina-
tion with Eq. (39 comprises the set of necessary conditions
for the validity of the theory. Finally, as the average quanti-
ties characterizing the problem evolve in tirtgee belowy,

the amplitudesA® and AA also change, preserving, at the

lowing systems of equations for the averaged and oscillatin§ame time, the corresponding adiabatic invariant

components:
| A= B+ cab®d,
_ - (39
IA(bI: 1_ (UIA+ 'y+ SaAb
and
1 A(8A),=£abéd,
(36)

TA(8D) = — wl AnSA,

whereI_A,I_AA,a,aA ,Ey_all are evaluated aA.
Equations(36) are Hamilton’s equations associated with
the Hamiltonian

H(SA, 8D ,t)= — (21 o) [ £ab(5®)2+ wl sa( 5A)2].
37

Define

V2:8w§3|_AA(|—A)72:80'p(0£70, (38
wherep=ab/A anda=A 1xa/lx= —A Qoa/Qq.  If 12>0
(i.e.,14,4>0), Eqs.(36) describe stabladiabaticoscillations
with slowly varying angular frequency, provided all time-
dependent parameters of the problem, @agatisfy the adia-

baticity condition

|/ w<v. (39)

Note that the dimensionless parametein Eq. (38) mea-

case, in which(}, is independent ofA. Therefore, the in-

equality (39) requires a sufficient nonlinearity. In addition to
the adiabaticity conditioi39), we must also add the follow-
ing two conditions imposed by the assumed smaliness
SA/A. The Hamiltonian(37) shows that the amplitudes of
the oscillations of A and & are related, i.e.,

AA=|gablwl 5p|Y?Ad. Thus, since in the autoresonance
w~Q0y=1/1,, we obtain the condition

AAIA~|eplo|2AdD <1, (40)

Furthermore, the expansion of in powers of 5A on the
RHS in Eq.(32) assumedAl o/l 5|~AA|l pp/l o] <1 or

lepo|YPAD<1. (41)

of

AAA® ~const. (43

Now, assuming the satisfaction of E¢89) and(42), we
return to Eqgs.(35 for the averaged quantities. We write

A=Ay(t) +d, whereA, is the value ofA for which the RHS
of the second of Eqg35) vanishes at all times, i.e.,

(1_(1)|A+ ‘y+ SaAb)A:AOEO (44)
and we assume thatl/Ag|<1. Then, to lowest order inl,
Egs.(35) become

I a0Aor= Bot Saoqua
_ (45)
lA0®i=— (@l aa— Ya— €8aaD) o0~ — wl pp0d,

where the subscript zero indicates the evaluatioAatThe
first of Egs.(45) yields

= (2agh) (I soAor— Bo)- (46)
Now, in orders of magnitude, the differentiation of E44)
with respect tot yields |Ag/Ag~O(uwl/|o]), while
| Bot! Bol ~ O(uw) by definition. Therefored®~ u/epo and
the assumed smallness ®f requires

(47)

which will be assumed to be satisfied in the following. If, for
simplicity, we seto, p~0(1) then ®,~0O(wu?e) and the
second of Eqgs(45) guarantees the relative smallnessdof
Suring the interaction. Note that E(B9) can be written also
as uw/v<<1 and therefore the satisfaction of the stronger in-
equality (47) guarantees our adiabaticity condition. Finally,
we observe that the only effects of the small terghand y

n the dynamics in the DAR regime are additional small
shifts of the average values and @, while the oscillating
parts 6A and &P of the solution remain unchanged. Thus, if
one neglects these small shifts, one can also @gnaibd y in
solving the evolution equations.

In conclusion, strong initial trapping and satisfaction of
the moderate nonlinearity and adiabaticity conditio@k)
and(47), are the necessary and sufficient conditions for sus-
taining the DAR in the driven dynamical system, i.e., pre-
serving the resonancel— wl,,~0(g); see Eq.(44)] be-
tween the driven and driving oscillations.

Before generalizing the averaged variational principle to
the autoresonance problem for multidimensional waves, we

wl|epo]~p(wlv)<1,

Satisfaction of this condition also justifies the single reso-demonstrate the DAR phenomenon in the case of the driven

nance approximation used earlier in Sec. Il. The two in-

equalities(40) and (41) can be rewritten as

lep(A®)? <[] <[ep(A®)? ", (42

nonlinear pendulum described by

Uy + wisinu=ca cos(J w(t)dt). (48)



1934 L. FRIEDLAND 55

05 T

44010V

ENERGIES, A, A'

OSCILLATOR AND DRIVER VARIABLES, u, w

-0.5 |

200 250 300 350 400 450 500 550 600 -300
TIME, t

TIME, t

FIG. 1. Variableu(t) of the driven pendulunidotted ling and _ o
the driving oscillation w=cog+] (solid line vs time for FIG. 2. Evolution of the slow energi (solid ling) and of the
H(t)=a [1—exp(—at)] and @=0.001. One observes phase lock- factorF=wl (dashed lingfor the a nonlinear pendulum driven by
ing between the driven and driving oscillations despite the decreasan OSC|||aU0n with a slowly varying frequency. The dots represents

of the driving frequency by a factor of1.5 fort between 200 and A’ =3u?—w§ cosu found by solving the exact evolution equation
600. for u. Oscillations ofwl, around unity indicate a persisting au-

toresonance in the system beyane0.

This application will allow us to illustrate our theory and
make the necessary preparations for treating an example of a 20(t)(Two) "R (m/2;Kk)~1. (51)
driven sine-Gordon equation in Sec. IV.

The actionl and the frequency), of the unperturbed
nonlinear pendulum of energf=(1/2)u’— w3 cosu are
[20]

This autoresonance relation defines «(t), which, in turn,
yields the evolution of the lowest-order enemyyof the sys-
tem. Since the frequenc§l,, in our case, is a decreasing
8wy function of A, the energy of the system increases with a
|:(—)[E(W/Z;K)—(l—KZ)F(’?T/Z;K)], decrease ofv. The increase of\ continues as long as the
m autoresonance conditiori$2) and(47) are satisfied. For in-
(49 stance, the adiabaticity condition requirge/dt—0 as the
energy of the oscillator increases and approaches the separa-
trix of the unperturbed oscillations, ieqﬂwo (or k—1).
d, Otherwise, the autoresonant evolution discontinues and the
"effect of the coupling becomes small due to the growing

1UQo=1p=2(7wq) F(7/2;k),

Wherex=%(1+A/cu§) (k<1 in the case of interestwhile F
andE are elliptic integrals of the first and the second kin
respectively. Furthermore, the functi@ in the evolution

equations31) and(32) is [20 phase mismatch between the driven and driving oscillations.
q 3 (32) s [20] It should be mentioned that the dynamics of the departure of
a=4gY4(1+g)7}, (50) the system from the autoresonance in the vicinity of the

separatrix involves crossing of resonances and may be rather

where g=exd—(#F'/F)] and F'=F(w/2;1-«), while  complex. The discussion of these effects can be found in
6p=—ml2 (recall thatd=A+ 6, andA is the phase mismatch Ref.[7].
of the driven and driving oscillationsand = y=0. Now we proceed to our numerical example. Figure 1

Now consider the case in which initially, at=t,, the  shows(dotted ling the results of the numerical solution of
oscillator is weakly excitedA~—1), w(t;)>wy, andw(t) is  EQ. (48) for u(t) in the casewy=1, w(t)=exp(—at) («
a slowly decreasingfunction of time. Suppose also that, at =0.00]), £=0.03, and subject to the initial conditioms=0
some time moment=t,, the driving frequency passes the andu,=0.1673(A=-0.986 att,=—300. We set the phase
linear resonance point, i.ew(ty)=wy. Then, if the variation of the driving oscillation to bej=« “Y1-exp(—at)]. In ad-
of w(t) is slow enough, the system will be strongly trappeddition to u(t) in Fig. 1, we show(solid line) the function
in the resonance14] in the vicinity of t=t, (since w=cody+m) representing the phase shiftéay ) driving
1-wl,——0 ast—ty, we haveb—~7in this casgand the  oscillation. One can see that, indeed, during the time interval
aforementioned theory predicts the DAR-type evolution ofshown in the figure the oscillator and the driver are phase
the oscillator fort>t,, provided the autoresonance condi- locked despite the decrease of the frequency of the driver by
tions are satisfied. In the DAR reginte>ty), Qo(t)~w(t)  a factor of ~1.5. The slow oscillatory modulation of the
[or 1-wl,<1; see Eq(44)], i.e., amplitude, characteristic of the autoresonance, is also seen in
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the figure. More details on the initial excitation stage of theodicity of U with respect tod and rewrite our variational

pendulum followed by the DAR are given in Fig. 2. This principle in the form[compare with Eqs(10) and (11)]

figure shows the results of the numerical solution of the sys-

tem of slow evolution equationg31) and (32) for A (the 5 j f (£)dX dT=0

solid line) for the same set of parameters and initial condi- v '

tions (A=—0.986 andd=——/2 att;=—300 as in Fig.

1. In the same figure we also shdwots the evolution of ~Where

A’'=(1/2)u?— w3 cosu found by solving the original equa- 1 2

tio,n (48). One can see a very good agreement betweand (LY== 1T[|_(— wU,+eUt kUy+eU, ,U,q)

A’, demonstrating the satisfaction of all the conditions of the 2w Jo

averaging procedure. Finally, Fig. 2 also shows the factor

F=wl, (dashed ling on the RHS of the equatio(82) for +ebU cos6—A+yy)]do (54)

the slow phase. This factor must oscillate around unity if theand ()= ()t UA

system is in the DAR regime, which is the case in the figure T.X T 2 0mT.X

beyond the linear resonance point0. Note also that the At this stage, to lowest order, we neglect the terms
) gU1 y in the arguments of in Eq. (54), i.e., consider the

oscillations ofwl 5 (representing the oscillations @f) be- ational luti ; Eq(14
come relatively large as the system approaches the separat?f?”at'ona evolution equatiofcompare to Eq(14)]

(A=1). The left inequality in Eq(42) is then violated and, at
t=600, we stop the calculations based on the slow evolution

(53

—wld,+kLY,—L3=eb cog6—A+yp), (55

equations. Shortly beyond this time the autoresonance in t 0_| (_ 0
system discontinues and the effect of the coupling with thr}ﬁhere L =L(“oUykUyU.q) —and - Lo,
. - ! =Ly, uw(—wU,y,kU,,U,q). Equation (565 is an
driver becomes negligible because of the growing phase mis- “"t'"x* . . . . .
match. ordinary differential equationwith respect tof) in which T
and X enter as fixed parameters. Therefore, we treat this
zeroth-order approximation via the Hamiltonian formalism.
IV. MULTIDIMENSIONAL AUTORESONANCE We introduceU=—wU,, write L°=L(U,—kU/w,U,q),

IN DRIVEN NONLINEAR WAVE SYSTEMS define the genera”zed momentum

In this section we shall generalize the theory for applica-
tions to driven nonlinear waves described by Lagrangians of
form (2). It is sufficient to consider the time and one spatial
dimension case, i.eu=u(x,t), L=L[u,,uy,u,q(x,t)], and
the evolution equation

P=0L%U=L%— (k/w)LY, (56)

use Eq.(56) to expressU=F(P,U,k/w,q), and construct
the Hamiltonian

H(P,U,X,T,0)=UP—°
dr(Ly) +dx(Ly ) —Ly=eb(X,t)cosp(x,1), (52

=FP—L%—¢bU cog 6— A+ yy].

since the case of higher dimensionality can be treated simi- (57)

larly. The slowly varying amplitudeb(x,t), frequency

w(x,t)=—d,, and wave vectok(x,t)=d,¢ of the pump Note that, in contrast to the nonlinear oscillajsee Eg.

wave on the RHS in Eq(52) are assumed to be known (15)], in addition tog we have another slow parameléw in

throughout the region of interest. We shall be solving thethe Hamiltonian. In order to shorten the notation, we shall

initial-value problem describininternal excitation and sub- denote the sefq,k/w} by a single letteQ. Next, we trans-

sequent evolution of the daughter wave via the resonant irform from P andU to the action-angle variabldsand 6 of

teraction with the pump and assume thatu,, andu, are  the unperturbed problem described by E§7) with £=0,

negligibly small for all values ok of interest at the initial i.e., writt P=P(6,1,Q) andU=U(#6,1,Q), where

time t=t,. We shall see below that these initial conditions,

under certain restrictions', may lead to_ the autoresqnance in I(A,Q)=(2m) 1 ? P*dU=1,—(k/®)l,. (58)

the system, i.e., to the adiabatic evolution of the excited non-

Ialrr:e:;t\évsggdp:grg);gnag?gpl)r;ég_st(i);glce with the pump wave IrI]-|ere_ P*=P*(U,A,Q) is the solution of compare with Eq.
In view of the assumed adiabaticity of the problem, and(16) in Sec. ]

similarly to the DAR case, we introduce the two-scale rep- _ _ _

resentation of the solution, i.e., write(x,t)=U(8,X,T), FP-L(F,~kFlo,U.q)=A 59

whereX=gex and T=et are the slow variables andlis the  gng

fast angle variable, which we shall identify later with the

canonical angle variable of a certain dynamical system. We 4 0

shall also assume that the daughter and pump waves are l1AA,Q)=(2m) 3§ LiAF,—kFlo,U,q)dU, (60

phase locked on the fast space-time scale, Re.y(t,x)

+ A(T,X). Then the frequency and wave vector of the non-whereF is evaluated aP=P*. Note that, as in Sec. Ill, we

linear wave —6;=w—¢cA; and 6,=k+eA, vary on the identify the fast angle variabl@ in our problem with the

slow scale and, to leading order, are as those of the pump. Asanonical angle variable of the unperturbed case with fixed

for the driven nonlinear oscillator, we assume the @ri- Q. Finally, Eq. (58) yields A=A(l,Q), so, in terms of the
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action-angle variables, the Hamiltoni@b7) becomegcom-
pare with Eq.(17) for the driven oscillator problein B= _% (110Q¢+120Qx),

H(0,,0,X,T)=A(1,Q)— sbU(6,,Q)cog oA + ol.
61
(6) 7= [11a( Qo o)+ 2a(Qufoq—on)]

Then, by making the usual single resonance approximation
in Eq. (61), we find that it yields the desired form of
U=U(#6,1,Q), which is periodic with respect té, but also — 2> [Q{U.Li}+Q U, Ly}, (67)
includes the slow variableX,T via 6, 6,, |, andQ. This 0
completes our zeroth-order solution.

Now we return to the exact variational princip(&3),

L - - f,9}=(fo0a—falq)-
where, in view of the above, we use trial functions of form{ QYA AJQ . o
[compare with Eq(20)] Equations(65) and (66) comprise a set of partial differ-

ential equations, which can be solved along the characteris-

U(6,X,T)=UT6,1(X,T),Q(X,T)]+eU(9,X,T)+0(e?), tics, originating on the boundary of the region of interest
(62)  (i.e., onthex axis att=t,), and we recall tham, u, u,, and

thereforeA are assumed to be small on this boundary. We

with U° being the zeroth-order solution. Following the stepsdefine the characteristics via

of Sec. Ill, one finds that, to first order i U%(6,1,Q) is

the only object necessary for calculating the averaged dt/dr=1, dxdr=l,a/l1a, (68

Lagrangian in the driven nonlinear wave problem. Then,

to O(e), L=L(—oUj+eU{’kU%+eU°U%q)~L"® subject to the initial conditionst(r=0)=t,, and

+&(L9Us°+ LU0 and, by averaging oves, we have x(7=0)=Xx,, whereris the parameter along a characteristic

(LYy={L%+e (Al S+ Al 3+ (UL D +(UILY)). Further- andx, is an arbitrary position on the boundary. Then Egs.

more, on averaging in Eq. (59, one finds (65 and(66) can be rewritten as

(L% =— w0l 2+kI3—A and, by choosind\(X,T) as the de-

with the averaged Poisson brackets defined via

pendent variable instead of(X,T), one can write I14A,=B—eab sind, (69
(U TxL 2 =Arx(URLY )+ 2oQr (U .%L 22 Combin-
ing all these results, one obtains the final expression for the | 1a® . =1+ wl o~ Kln— y—canb cosb. (70)
averaged Lagrangian ©(e) in our problem[compare with
Eq. (26)]; This is a system of ordinary differential equations foand

@ in the region of the X,t) plane accessible by the charac-

(L)=(L+ebU cog 6—A+y)) teristics originating on the boundafthe accessible regioin

=(—wo+sAp)l+(kted)l,—A+e[A(UAL the following).
e X2 rUal Now we observe that Eq$69) and (70) have the same
+A(UaL,)+a+ab cod A+ by— i) ]. (63)  form as the slow evolution equatiorf81) and (32) in the

, driven oscillator problem. Consequently, we can apply all
Here the averages are taken with respectbetween 0 he resuilts of the theory of the dynamic autoresonance di-
and 27 and U™ is used everywhere, but we omit the zero rectly to the driven nonlinear wave problem. This observa-
superscripts  for  simplicity. ~ Also, in  Eq. (63),  {jon |eads to the following conclusions.

a=Zo[Qr{Uqgl1)+Qx(Uqly)] and, as beforea and 6, () since, by assumption, the nonlinear wave is negligible
are the absolute value and the complex phag,e of the coeffy the houndary, its efficient excitation along a given char-
cient a, in the Fourier expansionU(6,1,Q)=  scteristic takes place only in the vicinity of the poing,
Zpan(l,Q)exp(iné). where the functiorD(w,k,q,A)=1+ wl;o—kl,, vanishes.

At this stage, we observe that one can Wrt€)  op the other hand, in the absence of the pump and for fixed
=L[A(X,T),A(X,T),T,X], i.e.,u(x,t) in our original varia- 4. p(Q,K,q,A)=0 is the dispersion relation for the
tional principle is now represented by the slow functionsyayeling-wave solution of the unperturbed, fixed parameter
A(X,T) .and A(X,T) in the averaged variational principle problem characterized by frequen€y and wave vectoK
(53), which becomes [17]. Therefore, the excitation of the daughter wave proceeds

in the vicinity of the region in theXt) plane, where the
5f f L[A(X,T),A(X,T),X,T]dX dT=0. (64) wave resonates with the pump, i.eQ=w(x,t) and
K=k(x,t). Furthermore, assuming that the initial excitation
stage islinear, the dispersion relatio®({2,K,q,A)=0 is
independent oA and thus the wave excitation takes place in
the vicinity of the resonancéne D[ w(X,t),k(X,t),q(x,t)]
=0 in the ,t) plane.

By using the Lagrangiari63) in Eq. (64) and taking the
variation with respect té\ andA, we arrive at the system of
evolution equationgcompare with Eqs(31) and(32)]

I 1AA+ 1 pA = B—cab sin @, (65) (b) In the initial excitation stage, as one approaches the
resonance line, the wave becomes strongly trapped into the
| A@+ 1 oa®y =1+ wl o~ Kkln— y—anb cosb, (66)  resonance. In other words, the phase mismdtchecomes

near either 0 orar(mod 2x) in the vicinity of the resonance
where®=A+ 6,— 5 and, similarly to Eq(33), line.
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(c) If one moves further along the characteristics from the c2k

resonant line, under certain conditiorisee beloy; the lo=— (02— A2 J(k), (77)
daughter wave enters the nonlinear autoresonant interaction
stage in which while [see the second of Eq&t9)]

D(w,k,p,A)=1+ wlp—Kklp~0. (71 | ® (k) 20F(m/2;k)

AT T 22 YAlK) = T 2_ 21, 2\12

ThenD(w,k,p,A) nearly vanishes in the accessible region (7= mwg(@” K (79)
beyond the resonance line, i.e., the wave is in an approxi-
mate resonancB~w(X,t) andK~k(x,t) inside the acces- and
sible region. Note that Eq.71) can be viewed as aalge- ) )
braic equation forA=A(x,t), while ®~0 (or 7). Thus we T ck Ja) = — 2¢°kF(m/2;x)
have obtained an approximate smooth solution for the '2A~  (@2—c2k?)T2 alK)= Two(w?—c’k?) V2
daughter wave in the entire autoresonant region. (79

(d) The solutions forA and ® described in(c) are only ) ) o )

A and® in the DAR) and the characteristic oscillations can equations(69) and(70) for the driven sine-Gordon equation

now be added in the autoresonant region. These small oscif?S€ IS given by the same equati@) as in Sec. lll and,

lations are found, similarly to the driven oscillator case, byaga_in,490=—7r/2. However, now the fa_ctors and Y d_o_ hot
solving the systenficompare with Eqs(36)] vanish because of the presencekdd in their definitions.

Nevertheless, as mentioned in Sec. Ill, these factors can only

l1a(6A) = eabod, slightly shift the average components and @ along the
characteristic§see Eqs(45) and(46)], leaving, at the same
l1A(6®) = (@l 1aa—Kl2aA) SA (72 time, the oscillatory part$A and &b of the solution un-
changed. The correction # is relatively unimportant and,
along the characteristics. One can see thitdfnpare with ~ consequently, focusing on the slow evolution of the energy
Eq. (39)] of the daughter wave, we shall neglggaind vy in Egs.(69)
and (70) and rewrite the full system of ordinary differential
v2=eab(klzaa—wl1an)(11a) 2 (73)  equations describing the driven Sine-Gordon problem as
is positive, we have stable oscillations®fnearm(mod 2m); dt/dr=1,
otherwise the oscillations are aroun¢rd 2r), provided, )
of course, that the initial phase locking stage led to a proper dx/dr=ckw,
value of ® (i.e., 0 or, respectively. 22, o1/ (80)
(e) Finally, the conditions guaranteeing the existence of dA/d7T=+eabQo(1-c?k* w?)sind,

the stable autoresonant evolution of the driven nonlinear _ 221 21 N
wave, are the same moderate nonlinearity and adiabaticity dd/d7=—(1-c*k*¥ w?) " Qo — (0?~c%*)™]
inequalities(42) and (47), where now the nonlinearity pa- +ea bQo(l—Czkzlwz)llchSD
rameter iso=A|klpp— ol anl| 0l 1] 71 A ’

We conclude this section by presenting an example ofvhere()y(A)=1/J, is the frequency of the unperturbed non-
autoresonant excitation and evolution of the solution of thainear pendulum of energi.

driven sine-Gordon equation At this point we proceed to our numerical example. We
5 5 . consider the initial-value problem in which the solutian
Uy~ CUyx+ wgsin u=eb cosy. (74 of the driven sine-Gordon equation is a given, sufficiently

] . ] ~small function ofx at t=t; and study the evolution of
The unperturbed  Lagrangian in this case isy 5 the semiplane X,t>t,) for the case when
L=3(uf—c’uy) twjcosu.  Equation (56) yields  y(x,t)=K[x—x2/2X,] ~B[t—t%2Ty], where @K, To,X,
P=[1-(cKw)]U and Eq.(59 becomes are constants. The frequency and the wave vector of the
L2 9i-1 2 _ pump wave in this case arew=w(1-1t/T;) and
2P1-(ckw)7] "~ wpcodd =A. (79 k=k(1—x/X,), respectively, and we shall use the values

. . _ J@=1, ckls=27%5 T,=10°, andX,=1C" in the calcula-
This is the same as in the nonlinear pendulum case of Sec. Iﬁons Figure 3 shows the geometry and boundaries of our
if one replaces *(ck/w)? in Eq. (75) by unity. By using Eq. :

; w2 ra > 5 example in thet;x) plane. The dotted lines in the figure are
t(rzg)r;efg\r/g[szgdthep deﬁr[miltiorgcilrilgz(f]ié)z]Ajszo cosU) and  tha jinear resonance lin@ hyperbolaon which

(02— k) =03 s 1= 0} (81)
w
1=~ ey m ), (78 and the linew=ck, i.e., t="To(1- cK/@) + (CK/®) ToX 5 'x.

Finally, we uset;=—400 and show the characteristittbe
where J(k) represents the action of the nonlinear pendulumsolid lines in Fig. 3 starting at ten different values of
of energy A [see the first of Eqs(49)] and, as before, between—400 and 500. Since the autoresonance relation
k=3(1+Alw?). Similarly, (71) in our case is
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FIG. 5. Space-time dependence of the slow energy of the daugh-
FIG. 3. Geometry and boundaries in the numerical example ofér wave in the example with the same parameters as in Fig. 4, but
the driven sine-Gordon equation. The linear resonanceaaadk  the pump wave propagating in the negativeirection.
lines represented by dots. The solid lines show the characteristics in
the (x,t) plane originating at=—400 and ten different points on ear wave proceeds in the vicinity of the linear resondtioe
the x axis. line passing trough the circles in theX) plane in Fig. 4.
. As the wave moves further into the autoresonant interaction
(w?—c?k?) =Q§(A), (82 region, the energp performs characteristic autoresonant os-
cillations around a monotonically increasing average value
we expect the autoresonance to proceed via the trapping int@, We see that the overall dependencedodlong the char-
the resonance near the resonant hyperfilaand continue  acteristics starting at=—300 is similar to_that in the DAR
beyond this line, but not past tfié=ck line in Fig. 3, where  case(see Fig. 2 The automatic increase &, similar to the
A—1(Q,—0) and the autoresonance conditions are violatedDAR, guarantees the_satisfaction of the nonlinear resonance
The departure from the autoresonance in our example tookondition (82). When A approaches unity, one expects to
place at the end points of the characteristics shown in Fig. 3epart from the autoresonance. This departure is manifested
The results of the solution of Eq&0) for the wave energiA  via the phase detrapping, which, in our example, takes place
are presented in Fig. 4. The figure shows the dependence af the end points of the characteristics in Figs. 3 and 4. We
A along the aforementioned ten characteristics. WeArse  discontinue the calculations at these points. Note also that
—0.986 andb=——=/2 at the initial integration points and the characteristic starting t=—400 andx=—400 in Fig. 4
the valuesb=1 ande=0.03. The lines in thet(x) plane in  does not cross the resonance line. Therefore, no trapping into
Fig. 4 are the characteristics themselves. One can see that, @ resonance and subsequent autoresonant interaction takes
expected, the efficient autoresonant excitation of the nonlinplace along this characteristic, as can be seen in the figure.
We conclude our illustration of autoresonant solutions of the
sine-Gordon equation by presenting another numerical ex-
ample with the same parameters as in Fig. 4, but the negative
sign ofk, i.e., for the pump wave propagating in the negative
x direction. This case is shown in Fig. 5.

V. CONCLUSION

We have developed a theory of multidimensional au-
toresonance of driven nonlinear waves in systems with adia-
batically varying parameters. The theory is applicable to a
broad class of resonantly perturbed nonlinear waves de-
scribed by the variational principle.

Our theory is based on the analysis of the reduced system
400800 POSITION. x of slow evolution equations found from the averaged varia-

tional principle. As a starting point, we have developed the
FIG. 4. Space-time dependence of the slow enekgpf the ~ averaging procedure leading to the averaged variational prin-

daughter wave along the characteristics in Fig. 3. The characteri&iPle in the dynamic autoresonance. The trapping into the
tics themselves are also shown in thetj plane. The circles indi- resonance and the conditions for the DAR in the system were
cate the linear resonance line. Note that the trapping into resonanéliscussed and formed the bases for a generalization to non-
and the subsequent autoresonant increase of the energy of tlieear waves. The theory was illustrated by an example of a
driven wave does not take place along the characteristic originatingonlinear pendulum perturbed by an oscillation with a
atx=-—400 (i.e., slightly beyond the linear resonance )ine slowly varying frequency.

WAVE ENERGY, A

TIME, t
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Using the main ideas of the averaged variational approactng waves described by the variational principle. This struc-
developed in the DAR problem, we have also constructed thaure is seen when, locallgin the zeroth-order of the pertur-
averaged variational principle for studying resonant excitabation schemg one associates the wave problem with that of
tion and subsequent evolution of nonlinear waves in slowlythe evolution of a characteristic driven dynamical system.
space-time varying media. We have considered the problefhen, in the first order, one obtains equations describing the
of autoresonance arising when a prescribed large-amplitudgpace-time evolution of the slow variables of the zeroth-
pump wave resonantly excites a nonlinear daughter waverder dynamical problem such as the energy and the phase
inside the region of interests. The reduced system of slovmismatch. As in Whitham’s theory of free modulatidis],
evolution equations in this problem comprises a set of firstthese slow evolution equations can be regarded as generali-
order partial differential equations that can be solved alongations of Hamilton's equations in dynamics to the associ-
characteristics originating on the boundary where the daughated problem of evolution of the adiabatically varying non-
ter wave is negligible. One finds that, along these charactetinear wave. The different ingredient in the present theory is
istics, the system of slow equations describing the problem ithe existence of the continuous phase locking between the
similar to that of the DAR. This similarity allowed us to pump and daughter waves. This intrinsic phase locking in the
apply all the results of the DAR directly to the problem of system has its origin in a similar dynamical probléDAR)
the multidimensional autoresonance in nonlinear wave sysand allows one to generalize the averaging method to the
tems. The theory was illustrated by a two-dimensional nu-autoresonant wave interactions. Finally, one major advantage
merical example of a driven sine-Gordon equation. of the averaged variational approach developed in this work

We conclude this section by making general remarks rebelongs to numerical applications. As illustrated by our ex-
garding the averaging method applied above. The method ismples in Sec. IV, the theory allows one to calculate the
based on the assumption of a resonant excitation of a quastharacteristic parameters of a resonantly excited nonlinear
periodic nonlinear wave such that its local wavelength iswave in space-time regions large compared to its wavelength
short compared to the scale length and frequency large conand period and thus to avoid numerical difficulties associated
pared to the time rate that characterize the variation of thevith the existence of the fast scales in the original system.
macroscopic parameters of the system. A similar assumption
is u_sed in the e|kpnal approximation for I_|near wave propa- ACKNOWLEDGMENTS
gation problems in adiabatically space-time varying media
[21]. The aforementioned scale difference means the exist- The author gratefully acknowledges stimulating discus-
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