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Autoresonant excitation and evolution of nonlinear waves: The variational approach

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 30 May 1996; revised manuscript received 9 September 1996!

It is shown that a large class of multidimensional nonlinear waves can be excited and controlled in adia-
batically varying systems driven by an externally launched pump wave. The excitation proceeds via the
trapping into the resonance, while later the nonlinear wave evolves by being phase locked with the pump wave
in an extended region of space and/or time despite the variation of system’s parameters. This automatic phase
locking ~autoresonance! yields a possibility of shaping the parameters of the nonlinear wave by varying the
nonuniformity and/or time dependence of the parameters of the system. The multidimensional theory of the
autoresonance for driven nonlinear waves is developed on the basis of the averaged variational principle and is
illustrated by an example of a driven sine-Gordon equation.@S1063-651X~97!04202-5#

PACS number~s!: 03.40.Kf; 52.35.Mw
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I. INTRODUCTION

Autoresonance is best known as a persisting phase l
ing between resonantly driven nonlinear oscillators and d
ing oscillations when the parameters of the system vary a
batically. The essence of the phenomenon in this case is
under certain conditions, if started in resonance, the non
ear oscillatorautomaticallyadjusts the amplitude of oscilla
tions ~and therefore also its frequency! and continuously re-
mains in an approximate resonance with the driver des
the variation of system’s parameters. In early studies,
autoresonance idea was used in relativistic particle acce
tors @1–4#. More recently, many other applications of th
autoresonance can be found in the literature. Those inc
controlled excitation of atoms@5# and dissociation of mol-
ecules@6#, applications in nonlinear dynamics@7–9# and un-
conventional particle accelerators@10,11#, autoresonant exci
tation of intense plasma waves@12# and solitons@13#, and,
finally, autoresonant mode conversion@14# and three-wave
interactions@15#. Despite the variety, all these studies we
essentially reduced to the aforementioned one-dimensi
driven nonlinear oscillator problem. In autoresonant wa
interaction problems@12–15# such a reduction was possib
by assuming either only time or one spatial dependenc
the parameters of the system. Nevertheless, recently, it
shown that the one-dimensionality assumption is not alw
necessary and, in some cases, the autoresonance is cha
istic of multidimensional wave interactions@16#. This work
demonstrated that if an adiabatically varying medium c
support a number of waves and one of the waves is exc
externally~the pump wave! and launched towards the regio
where it can resonate with another wave~the daughter wave!,
then, under certain conditions, the daughter wave is exc
in the medium and remains in autoresonance with the pu
wave despite the multidimensionality of the problem. Ho
ever, Ref.@16# was limited to the case ofweaklynonlinear
waves.

In the present work we shall develop a theory of the
toresonant excitation and evolution of a class of multidim
sional nonlinear wavesu(rW,t) described by the variationa
principle. An example is the driven Klein-Gordon equatio
551063-651X/97/55~2!/1929~11!/$10.00
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utt2c2uxx2 f ~u,q!5«b cosc, ~1!

where the right-hand side~RHS! represents anexternally
launchedlinear eikonal pump wave, and«!1 is a small
dimensionless coupling parameter. We assume that the
plitude b(rW,t), wave vector kW (rW,t)5Dc, and frequency
v(rW,t)52c t of the pump wave, as well as the velocityc
and the parameterq on the left-hand side~LHS! of Eq. ~1!,
all are given slowfunctions of space-time.~We shall also
assume the existence of an additional small dimension
adiabaticity parameterm!1 in our problem characterizing
this slow variation.! Our goal is to investigate the possibilit
of theautoresonancein the system described by Eq.~1!, i.e.,
the regime when the nonlinear wave represented by the L
of Eq. ~1! is phase locked with the pump wave. We shall n
limit ourselves to Eq.~1! only, but consider the autoreso
nance in more general nonlinear wave evolution proble
described by the variational principledu(**L drW dt)50,
where the integration is over afinite region of space-time and

L5L~ut ,ux ,uy ,uz ,u,q!1«bu cosc. ~2!

This Lagrangian yields the variational evolution equation

] t~Lut!1]x~Lux!1]y~Luy!1]z~Luz!2Lu5«b cosc. ~3!

@The Klein-Gordon equation case~1! corresponds toL5 1
2

(ut
22c2ux

2)1* f (u,q)du.#
The purpose of this work is to construct theaveraged

variational principle for studying autoresonance effects a
sociated with Eq.~3!. The idea of the averaged variation
principle was developed by Whitham@17# in the theory of
modulations of nonlinear waves. The slowness of modu
tions is an essential assumption of Whitham’s averag
method. The possibility of applying a similar approach
autoresonant wave interactions is based on the conjectu
the existence and slowness of the evolution ofautoresonant
nonlinear waves. Finding the conditions for entering and s
taining such solutions of Eq.~3! comprises the main goal o
the present work. The variational approach guarantees
generality of our theory and allows the use of many ingre
ents of Whitham’s theory of adiabatic modulations.
1929 © 1997 The American Physical Society
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Our presentation will be as follows. In Sec. II, as a p
liminary step, we shall construct the averaged variatio
principle for a driven adiabatic oscillator. We shall prese
the main steps of the averaging procedure in this o
dimensional application and compare the results of the a
aged variational approach with those based on the Ha
tonian formalism and used previously in studying t
autoresonance in nonlinear dynamics. In Sec. III we s
discuss the trapping into the resonance and the autor
nance conditions in the driven nonlinear oscillator case
illustrate the theory in the case of an adiabatically driv
nonlinear pendulum. In Sec. IV we shall generalize
theory for applications to multidimensional nonlinear wav
In the same section we shall also present a numerical
ample of a driven sine-Gordon equation. Section V gives
conclusions.

II. AVERAGED VARIATIONAL PRINCIPLE
FOR RESONANTLY DRIVEN DYNAMICAL SYSTEMS

In this section we shall consider the dynamics of adiab
driven nonlinear oscillationsu(t) characterized by the La
grangian of formL5L[ut(t),u(t),q(t)]1«u(t)b(t)cos@c
1c0#, wherec5* 0

t v(t)dt andc0(t) is a givenslow phase
modulation of the driver. Thus we study solutions of t
one-dimensional evolution equation@see Eq.~3!#

dt~Lut!2Lu5«b cos~c1c0!. ~4!

We have defined two small parameters in our problem,
the adiabaticity parameterm and the coupling constant«.
Although, in principle,« andm are independent, we shall se
in Sec. III that in the autoresonance« must be thelarger of
the two parameters. Consequently, the following theory
O~«! perturbation analysis. It is known that the autores
nance phenomenon in the one-dimensional problem
scribed by Eq.~4! can be dealt with by using the conve
tional Hamiltonian approach~see, for example, Ref.@5#!.
Nevertheless, this method is not suitable for applications
multidimensional driven nonlinear wave systems. Therefo
in this section we shall develop an alternative appro
based on the averaged variational principle and apply it
to driven dynamical systems and later~Secs. IV and V! to
autoresonant wave evolution problems.

We proceed by introducing a two-scale representation
the solution, i.e., writeu(t)5U(u,T). HereT[«t is a slow
variable representing the effects of the presence of the dr
and of the adiabatic variation ofq, b, c0, andv, which all
are assumed to be functions ofT. On the other hand, the
angle variableu represents the phase of the nonlinear os
lations and we shall assume that it can be written asu5c(t)
1D(T). In other words, on the fast scale, the phase is loc
on that of the driver, but we also add a slow modulationD in
u. Consequently, the frequency of the nonlinear oscillatio
V5du/dt5v(T)1«DT , to leading order, is the same as t
frequency of the driver. Conditions for the validity of th
phase-locking assumption will be outlined in Sec. III.

By differentiation,

ut5vUu1«UT8 , ~5!
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where (•••)T85(•••)T1(•••)uDT , which after the substitu-
tion into Eq.~4! yields

vL1u2L01«L1T8 5«b cos~c1c0!. ~6!

Here L0[Lu , L1[Lut, and the arguments inL0,1 are

(vUu1«UT8 ,U,q). At this stage, following Whitham@17#
we start treating the variablesu andT in Eq. ~6! as indepen-
dent. Then, since, originally,u(t)5U(u,T) is a function of a
single variable, we have the freedom of adding an additio
equation to our problem. One must choose this equation
that the solutionu(t)5U(u,T) has the desired overall tim
dependence. The convenient method for achieving this g
is by assuming 2p periodicity of U with respect tou for
fixed T. The reasoning behind this assumption will be giv
below, when we shall identifyu as the canonical angle var
able of the corresponding unperturbed oscillator problem

In order to exploit the periodicity assumption, we mul
ply Eq. ~6! by Uu and rewrite its LHS in the form of a
conservation law

~vUuL12L !u1«~UuL1!T85«bUucos~u2D1c0!, ~7!

where~see above! D(T)5u2c is the slow phase mismatch
Now we average Eq.~7! with respect tou over the period of
2p, holdingT fixed. This yields

dI1 /dT5b^Uu~u,T!cos@u2D1c0#&, ~8!

whereI 1(T)5^UuL1& and^•••&5~1/2p!*0
2p~•••!du. The peri-

odicity of U also allows us to expand in the Fourier seri
U(u,T)5(nan(T)exp(inu), a2n5an* , and complete the
averaging on the RHS of Eq.~8!,

dI1 /dT52ab sin~D1u02c0!, ~9!

wherea(T)5ua1u andu0(T)5arg~a1!. Equations~7! and~9!
comprise a complete set for the two unknown functio
U(u,T) andD(T) in our problem.

Now we further exploit the idea of using variablesu and
T independently and observe that Eq.~6! can be also ob-
tained from the variational principle

dUE 1

2p E
0

2p

@L~vUu1«UT8 ,U,q!

1«bU cos~u2D1c0!#du dT50 ~10!

or

dUE ^L&dT50, ~11!

where

^L&5^L&1«ab cos~D1u02c0!. ~12!

Equation~11! is the exact form of Whitham’s@17# averaged
variational principle for applications to resonantly drive
phase-locked oscillations. It reduces the problem to va
tional equations associated with the averaged Lagrangian^L&
depending on slow variables only. The variational princip
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55 1931AUTORESONANT EXCITATION AND EVOLUTION OF . . .
~10! is exact and involves variation of the functional within
class of functionsU(u,T) periodic with respect tou. Further
progress in the theory can be made by restricting this clas
functions via the following perturbation analysis.

As a first step, we observe that our problem is simplifi
significantly if one neglects thesmall term «UT8 in the first
argument ofL in Eq. ~10!, i.e., considers the problem give
by theapproximatevariational principle

dUE 1

2p E
0

2p

@L~vUu ,U,q!

1«bU cos~u2D1c0!#du dT50. ~13!

The variational evolution equation for this problem is

vL1u
0 2LU

0 5«b cos~u2D1c0!, ~14!

whereL0[L(vUu ,U,q). Later, solutions of Eq.~14! will
serve as a zeroth-order approximation in the exact variatio
principle ~10!. Note that this is not a usual perturbatio
scheme in terms of« since we have left the driving term i
Eq. ~13!. If the oscillator is not excited initially, this term i
important and dominates during the initial evolution sta
~see Sec. III!.

In contrast to~6!, Eq. ~14! is a second-orderordinary
differential equation forU(u,T) as a function ofu, while T
plays the role of afixedparameter and enters viaq, b, v, c0,
andD evaluated at their values at timeT in our exact prob-
lem. A convenient way of finding solutions of Eq.~14! hav-
ing the desired periodicity properties is by using the Ham
tonian formalism. We introduce the notatio
U̇[]U/]t5vUu , define the usual generalized momentu
P[L 1

0(U̇,U,q), use this definition to expres
U̇5F(P,U,q), and construct the Hamiltonian

H~P,U,T,t !5vUuL1
02L0

5FP2L0~F,P,q!2«bU cos@u~ t !2D1c0#.

~15!

Finally, we transform fromP,U in Eq. ~15! to the canonical
action-angle variablesI ,u of the unperturbed oscillator. Not
that we identifyu with the cyclic variable in our variationa
principle. Thus we writeU5U(u,I ,q), P5P(u,I ,q), where
@18# I (A,q)5(2p)21rP* dU and P*5P* (U,A,q) is the
solution of

FP2L~F,U,q!5A. ~16!

Obviously,A is the energy of the unperturbed oscillator an
using the definition ofI , we can also writeA5A(I ,q). In
terms of the canonical variables, the Hamiltonian~15! be-
comes

H~u,I ,q,T!5A~ I ,q!2«bU~u,I ,q!cos@u2D1c0#.
~17!

The next step is to expandU(u,I ,q)5(nan(I ,q)exp(inu)
and leave only the resonant termn51 in the interaction part
of the Hamiltonian. Thus we consider the dynamics given

H̃'A~ I ,q!2«ab cos~D1u02c0!, ~18!
of
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where a(I ,q)5ua1u and u0(I ,q)5arg~a1!. This step is the
usual single resonance approximation of the theory of
nonlinear resonance@19#, which assumes that the neglecte
rapidly oscillating terms in the Hamiltonian have a negligib
effect on the dynamics. The Hamiltonian~18! yields the evo-
lution equations

İ52]uH̃52eabsin~D1u0c0!,

u̇5v5] I H̃5V0~ I ,q!2«aIb cos~D1u02c0!, ~19!

whereV05] IA(I ,q) is the frequency of the unperturbed o
cillator. One can see that, within the zeroth-order approxim
tion, I5I (T) and, consequently, the zeroth-order soluti
U5U(u,I ,q) has the desired overall time dependence, i
U is periodic with respect to the fast variableu and has a
parametric dependence on the slow time viav, I , andq.

At this stage, we return to our exact variational princip
~10!, where we chooseU to be in the vicinity of the zeroth-
order approximation, i.e.,

U~u,T!5U0@u,I ~T!,q~T!#1«U1~u,T!1O~«2!, ~20!

U0 representing the zeroth-order solution discussed ab
Now one can show that, toO~«!, the averaged Lagrangia
^L& in our original problem depends onU0 only. Indeed, to
O~«!,

L5L~vUu
01«UT8

01«vUu
1,U01«U1,q!

1«bU0 cos~u2D1c0! ~21!

or, by expansion,

L5L01«@~UT8
01vUu

1!L1
01U1L0

01bU0 cos~u2D1c0!#.
~22!

Then, on averaging overu, we find

^L&5vI2A1«@^UT8
0L1

0&1^vUu
1L1

01U1L0
0&

1a0b cos~D1u0
02c0!#, ~23!

where we used

^L0&5vI2A, ~24!

obtained by averaging in Eq.~16!. Next we calculate

^vUu
1L1

01U1L0
0&5v~2p!21E

0

2p

Uu
1L1

0du1^U1L0
0&

5^U1~2vL1u
0 1L0

0!&. ~25!

Thus, because of Eq.~14!, ^vU u
1L 1

01U1L 0
0&;O(«) and in-

deed the effect ofU1 in ^L& is of O~«2!. Finally, instead of
the actionI5I (A,q), we now view the energyA as the de-
pendent variable and writêUT8

0L1
0&5DTI1AT^UA

0L1
0&1a,

wherea5qT^U q
0L 1

0&. Then, toO~«!, and by omitting~for
simplicity! the superscripts denoting the zeroth-order so
tion, we have

^L&5~v1«DT!I2A1«@AT^UAL1&1a

1ab cos~D1u02c0!#. ~26!
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Expression~26! is the main result at this stage of th
theory. We see that, toO~«!, the averaged Lagrangian is
function ofA(T), D(T), and other slow~but known! param-
eters of the problem, i.e.,̂L&5L[A(T),D(T),T]. Thus the
averaged variational principle~11! becomes

dE L@A~T!,D~T!,T#dT50. ~27!

This equation must be supplemented by Eq.~9!, where, to
the desired order, one can replaceI 1 by I , yielding

I AAT52I qqT2ab sin~D1u02c0!. ~28!

One can view this equation as defining the slow phase m
matchD(T) and thereforeA(T) remains the only free func
tion in the functional in Eq.~27!. By taking the variation in
Eq. ~27! with respect toA, definingF[D1u02c0, and using
the identity

aA1AT^UAL1&A2^UAL1&T5qT$U,L1%, ~29!

where the averaged Poisson brackets are$U,L1%[
^UqL1A2UAL1q&, we obtain

~v1«DT!I A211«@qT$U,L1%1baAcosF

2bau0AsinF#50. ~30!

Now Eq.~30! can be interpreted as the evolution equation
the slow phase mismatchD(T), while Eq. ~28! becomes the
evolution equation forA. Remarkably, one can also obta
Eq. ~28! by using the same variational principle~27!, but
taking the variation with respect toD. Thus the evolution
equations~28! and ~30! are unified by asingle variational
principle. Finally, we return to the original time variab
t5T/« and rewrite Eqs.~28! and ~30! as

I AAt5b2«ab sinF, ~31!

I AF t512vI A1g2«aAb cosF, ~32!

where

b52qtI q ,

g5I A~qtu0q2c0t!2qt$U,L1%. ~33!

Equations~31! and~32! comprise a complete set of evolutio
equations for studying the dynamic autoresonance in the
tem. These evolution equations can be obtained directly
from the conventional Hamiltonian formalism. In fact, the
were used in previous studies of the autoresonance in
linear dynamics~see, for example, Refs.@5–9#!. Neverthe-
less, here we have derived the evolution equations via
averaged variational principle and all the steps in this d
vation are generalizable to driven multidimensional wa
problems, the study of which is the ultimate goal of t
present work. We shall postpone this generalization u
Sec. IV and devote the next section to the summary of
s-

r

s-
so

n-

e
i-
e

il
r

present understanding of the trapping into resonance
lowed by the autoresonant evolution in driven dynami
systems. Such a summary is necessary not only for c
pleteness, but also because many results of this theory ca
used in studying the autoresonant excitation and evolutio
nonlinear waves~see Sec. IV!.

III. PHASE LOCKING AND DYNAMIC AUTORESONANCE

The phase-locking phenomenon in the dynamical sys
considered in the preceding section corresponds to the
ation when the phaseF @see Eqs.~31! and ~32!# varies
slowly and remains bounded despite the time variation of
parameters (q,v,b). One possibility for such a phase lockin
corresponds to the case when one can neglect the intera
term and the small factorg on the RHS of Eq.~32! and, at
the same time, the difference 12vI A5I A(V02v) is small
during the interaction, i.e., the system automatically adju
its nonlinear frequency to remain in the approximate re
nance continuously. We shall refer to this situation as to
dynamic autoresonance@5# ~DAR! in the following. In addi-
tion to the DAR, there also exists another important situ
tion, when the difference 12vI A in Eq. ~32! is of O~1!, but,
despite the smallness of«, the interaction term on the RHS
of Eq. 10~32! is sufficiently large to nearly cancel 12vI A .
One finds@14# that this is a generic situation if, initially, the
system starts out of resonance, i.e.,V02v;O~V0!, but the
oscillator is not excited significantly~u!1!. The initial inter-
action stage, in this case, can be treated within alinear
theory and the functiona on the RHS of Eq.~32! is the
amplitude of these linear oscillations. Thena scales asA1/2

and thereforeaA;A21/2 is large during the initial excitation
stage. It was found in Ref.@14# that this large factor in Eq.
~32! leads to the phase locking in the system followed by
automatic cancellation of the term 12vI A on the RHS in Eq.
~32!. The cancellation continues until, due the variation
the driving frequency, the system approaches the reson
and 12vI A5I A(V02v) becomes small at some time mo
ment t0. Beyondt0, the energyA of the oscillator is suffi-
ciently large, so the interaction term in Eq.~32! becomes
unimportant and the system enters the DAR stage. Ano
important result@14# is that, if the above-mentioned trappin
into resonance starts sufficiently far from the resonance
leads to astrongphase locking in the initial DAR stage. In
other words, at the beginning of the DAR,F oscillates
around 0 or p~mod 2p!, depending on whethe
a A

21(12vI A)→10 or 20 as one approaches the line
resonance, while the amplitudeDF of these oscillations is
relatively smallDF!p. This strong phase-locking effect i
described in Ref.@14# so we shall not present its details he
and proceed directly to the DAR.

Assume that, att5t0 ~the initial stage of the DAR!, the
system is strongly trapped in the resonance in the vicinity
say,F~mod 2p!'p, while 12vI A!1 ~V0'v!. Then, under
certain conditions, one finds that, fort.t0 , the system of
~31! and ~32! evolves so thatA andF perform small oscil-
lations around slowly varying averages such that the diff
ence 12vI A remains small continuously, i.e., the system
mains in the DAR regime. Indeed, we seek solutions of E
~31! and ~32! in the form
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55 1933AUTORESONANT EXCITATION AND EVOLUTION OF . . .
A~ t !5Ā~ t !1dA,

F~ t !5p1F̄~ t !1dF, ~34!

wheredA andc are the assumed small~udA/Au,udFu/p!1!
oscillating parts of the solutions, whileĀ andp1F̄ repre-
sent the slowly varying averages. We also assume thatF̄!p.
Then we can linearize Eqs.~31! and ~32! and write the fol-
lowing systems of equations for the averaged and oscilla
components:

Ī AĀt5b̄1«ābF̄,
~35!

Ī AF̄t512v Ī A1ḡ1«āAb

and

Ī A~dA! t5«ābdF,
~36!

Ī A~dF! t52v Ī AAdA,

where Ī A , Ī AA ,ā,āA ,b̄,ḡ all are evaluated atĀ.
Equations~36! are Hamilton’s equations associated w

the Hamiltonian

H~dA,dF,t !52~2Ī A!21@«āb~dF!21v Ī AA~dA!2#.
~37!

Define

n25«vābĪAA~ Ī A!225«spvV̄0 , ~38!

wherep5āb/Ā ands5A IAA / Ī A52A V0A /V̄0. If n2.0
~i.e., Ī AA.0!, Eqs.~36! describe stableadiabaticoscillations
with slowly varying angular frequencyn, provided all time-
dependent parameters of the problem, sayv, satisfy the adia-
baticity condition

uv tu/v!n. ~39!

Note that the dimensionless parameters in Eq. ~38! mea-
sures the degree of the nonlinearity and vanishes in the li
case, in whichV0 is independent ofA. Therefore, the in-
equality~39! requires a sufficient nonlinearity. In addition t
the adiabaticity condition~39!, we must also add the follow
ing two conditions imposed by the assumed smallness
dA/Ā. The Hamiltonian~37! shows that the amplitudes o
the oscillations of A and F are related, i.e.,
DA'u«āb/v Ī AAu

1/2DF. Thus, since in the autoresonan
v'V̄051/Ī A , we obtain the condition

DA/Ā;u«p/su1/2DF!1. ~40!

Furthermore, the expansion ofI A in powers ofdA on the

RHS in Eq.~32! assumeduD Ī A/ Ī Au'DAu Ī AA/ Ī Au!1 or

u«psu1/2DF!1. ~41!

Satisfaction of this condition also justifies the single re
nance approximation used earlier in Sec. II. The two
equalities~40! and ~41! can be rewritten as

u«p~DF!2u!usu!u«p~DF!2u21, ~42!
g

ar

of

-
-

which, in the caseDF;O~1!, can be identified as themod-
erate nonlinearityconditions of the theory of the nonlinea
resonance@19#. The smaller the amplitudeDF of the oscil-
lations, the easier it is to satisfy Eq.~42!, which in combina-
tion with Eq. ~39! comprises the set of necessary conditio
for the validity of the theory. Finally, as the average quan
ties characterizing the problem evolve in time~see below!,
the amplitudesDF andDA also change, preserving, at th
same time, the corresponding adiabatic invariant

DADF'const. ~43!

Now, assuming the satisfaction of Eqs.~39! and~42!, we
return to Eqs.~35! for the averaged quantities. We writ
Ā5A0(t)1d, whereA0 is the value ofĀ for which the RHS
of the second of Eqs.~35! vanishes at all times, i.e.,

~12vI A1g1«aAb!A5A0
[0 ~44!

and we assume thatud/A0u!1. Then, to lowest order ind,
Eqs.~35! become

I A0A0t5b01«a0bF̄,
~45!

I A0F̄t52~vI AA2gA2«aAAb!0d'2vI AA0d,

where the subscript zero indicates the evaluation atA0. The
first of Eqs.~45! yields

F̄5~«a0b!21~ I A0A0t2b0!. ~46!

Now, in orders of magnitude, the differentiation of Eq.~44!
with respect to t yields uA0t/A0u;O~mv/usu!, while
ub0t/b0u;O~mv! by definition. Therefore,F̄;m/«ps and
the assumed smallness ofF̄ requires

m/u«psu'm~v/n!2!1, ~47!

which will be assumed to be satisfied in the following. If, f
simplicity, we sets, p;0~1! then F̄1;O~vm2/«! and the
second of Eqs.~45! guarantees the relative smallness ofd
during the interaction. Note that Eq.~39! can be written also
asmv/n!1 and therefore the satisfaction of the stronger
equality ~47! guarantees our adiabaticity condition. Finall
we observe that the only effects of the small termsb andg
on the dynamics in the DAR regime are additional sm
shifts of the average valuesĀ and F̄, while the oscillating
partsdA anddF of the solution remain unchanged. Thus,
one neglects these small shifts, one can also omitb andg in
solving the evolution equations.

In conclusion, strong initial trapping and satisfaction
the moderate nonlinearity and adiabaticity conditions,~42!
and~47!, are the necessary and sufficient conditions for s
taining the DAR in the driven dynamical system, i.e., pr
serving the resonance@12vI 1A;O~«!; see Eq.~44!# be-
tween the driven and driving oscillations.

Before generalizing the averaged variational principle
the autoresonance problem for multidimensional waves,
demonstrate the DAR phenomenon in the case of the dr
nonlinear pendulum described by

utt1v0
2sinu5«a cosS E v~ t !dtD . ~48!
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This application will allow us to illustrate our theory an
make the necessary preparations for treating an example
driven sine-Gordon equation in Sec. IV.

The action I and the frequencyV0 of the unperturbed
nonlinear pendulum of energyA5(1/2)u t

22v 0
2 cosu are

@20#

I5S 8v0

p D @E~p/2;k!2~12k2!F~p/2;k!#,

~49!
1/V05I A52~pv0!

21F~p/2;k!,

wherek51
2~11A/v0

2! ~k,1 in the case of interest!, while F
andE are elliptic integrals of the first and the second kin
respectively. Furthermore, the functiona in the evolution
equations~31! and ~32! is @20#

a54g1/2~11g!21, ~50!

where g5exp@2(pF8/F)# and F85F~p/2;12k!, while
u052p/2 ~recall thatF5D1u0 andD is the phase mismatc
of the driven and driving oscillations! andb5g50.

Now consider the case in which initially, att5t1 , the
oscillator is weakly excited~A'21!, v~t1!.v0, andv(t) is
a slowly decreasingfunction of time. Suppose also that,
some time momentt5t0 , the driving frequency passes th
linear resonance point, i.e.,v~t0!5v0. Then, if the variation
of v(t) is slow enough, the system will be strongly trapp
in the resonance@14# in the vicinity of t5t0 ~since
12vI A→20 ast→t0 , we haveF→'p in this case! and the
aforementioned theory predicts the DAR-type evolution
the oscillator fort.t0 , provided the autoresonance cond
tions are satisfied. In the DAR regime~t.t0!, V0(t)'v(t)
@or 12vI A!1; see Eq.~44!#, i.e.,

FIG. 1. Variableu(t) of the driven pendulum~dotted line! and
the driving oscillation w5cos@c1p# ~solid line! vs time for
c(t)5a21@12exp~2at!# anda50.001. One observes phase loc
ing between the driven and driving oscillations despite the decre
of the driving frequency by a factor of;1.5 for t between 200 and
600.
f a

,

f

2v~ t !~pv0!
21F~p/2;k!'1. ~51!

This autoresonance relation definesk5k(t), which, in turn,
yields the evolution of the lowest-order energyA of the sys-
tem. Since the frequencyV0, in our case, is a decreasin
function of A, the energy of the system increases with
decrease ofv. The increase ofA continues as long as th
autoresonance conditions~42! and ~47! are satisfied. For in-
stance, the adiabaticity condition requiresdv/dt→0 as the
energy of the oscillator increases and approaches the se
trix of the unperturbed oscillations, i.e.,A→v0

2 ~or k→1!.
Otherwise, the autoresonant evolution discontinues and
effect of the coupling becomes small due to the grow
phase mismatch between the driven and driving oscillatio
It should be mentioned that the dynamics of the departur
the system from the autoresonance in the vicinity of
separatrix involves crossing of resonances and may be ra
complex. The discussion of these effects can be found
Ref. @7#.

Now we proceed to our numerical example. Figure
shows~dotted line! the results of the numerical solution o
Eq. ~48! for u(t) in the casev051, v(t)5exp~2at! ~a
50.001!, «50.03, and subject to the initial conditionsu50
andut50.1673~A520.986! at t152300. We set the phas
of the driving oscillation to bec5a21@12exp~2at!#. In ad-
dition to u(t) in Fig. 1, we show~solid line! the function
w5cos~c1p! representing the phase shifted~by p! driving
oscillation. One can see that, indeed, during the time inte
shown in the figure the oscillator and the driver are ph
locked despite the decrease of the frequency of the drive
a factor of;1.5. The slow oscillatory modulation of th
amplitude, characteristic of the autoresonance, is also see

se

FIG. 2. Evolution of the slow energyA ~solid line! and of the
factorF5vI A ~dashed line! for the a nonlinear pendulum driven b
an oscillation with a slowly varying frequency. The dots represe
A85

1
2u t

22v0
2 cosu found by solving the exact evolution equatio

for u. Oscillations ofvI A around unity indicate a persisting au
toresonance in the system beyondt50.
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55 1935AUTORESONANT EXCITATION AND EVOLUTION OF . . .
the figure. More details on the initial excitation stage of t
pendulum followed by the DAR are given in Fig. 2. Th
figure shows the results of the numerical solution of the s
tem of slow evolution equations~31! and ~32! for A ~the
solid line! for the same set of parameters and initial con
tions ~A520.986 andF52c2p/2 at t152300! as in Fig.
1. In the same figure we also show~dots! the evolution of
A85(1/2)u t

22v 0
2 cosu found by solving the original equa

tion ~48!. One can see a very good agreement betweenA and
A8, demonstrating the satisfaction of all the conditions of
averaging procedure. Finally, Fig. 2 also shows the fac
F5vI A ~dashed line! on the RHS of the equation~32! for
the slow phase. This factor must oscillate around unity if
system is in the DAR regime, which is the case in the fig
beyond the linear resonance pointt50. Note also that the
oscillations ofvI A ~representing the oscillations ofI A! be-
come relatively large as the system approaches the sepa
~A51!. The left inequality in Eq.~42! is then violated and, a
t5600, we stop the calculations based on the slow evolu
equations. Shortly beyond this time the autoresonance in
system discontinues and the effect of the coupling with
driver becomes negligible because of the growing phase
match.

IV. MULTIDIMENSIONAL AUTORESONANCE
IN DRIVEN NONLINEAR WAVE SYSTEMS

In this section we shall generalize the theory for appli
tions to driven nonlinear waves described by Lagrangian
form ~2!. It is sufficient to consider the time and one spat
dimension case, i.e.,u5u(x,t), L5L[ut ,ux ,u,q(x,t)], and
the evolution equation

] t~Lut!1]x~Lux!2Lu5«b~x,t !cosc~x,t !, ~52!

since the case of higher dimensionality can be treated s
larly. The slowly varying amplitudeb(x,t), frequency
v(x,t)52] tc, and wave vectork(x,t)5]xc of the pump
wave on the RHS in Eq.~52! are assumed to be know
throughout the region of interest. We shall be solving
initial-value problem describinginternal excitation and sub-
sequent evolution of the daughter wave via the resonan
teraction with the pump and assume thatu, ut , andux are
negligibly small for all values ofx of interest at the initial
time t5t1 . We shall see below that these initial condition
under certain restrictions, may lead to the autoresonanc
the system, i.e., to the adiabatic evolution of the excited n
linear wave propagating in resonance with the pump wav
an extended region of space-time.

In view of the assumed adiabaticity of the problem, a
similarly to the DAR case, we introduce the two-scale re
resentation of the solution, i.e., writeu(x,t)5U(u,X,T),
whereX5«x andT5«t are the slow variables andu is the
fast angle variable, which we shall identify later with th
canonical angle variable of a certain dynamical system.
shall also assume that the daughter and pump waves
phase locked on the fast space-time scale, i.e.,u5c(t,x)
1D(T,X). Then the frequency and wave vector of the no
linear wave2u t5v2«DT and ux5k1«Dx vary on the
slow scale and, to leading order, are as those of the pump
for the driven nonlinear oscillator, we assume the 2p peri-
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odicity of U with respect tou and rewrite our variationa
principle in the form@compare with Eqs.~10! and ~11!#

dUE E ^L&dX dT50, ~53!

where

^L&5
1

2p E
0

2p

@L~2vUu1«UT8 ,kUu1«Ux8 ,U,q!

1«bU cos~u2D1c0!#du ~54!

and (•••)T,X8 5(•••)T,X1UuDT,X .
At this stage, to lowest order, we neglect the ter

«UT,X8 in the arguments ofL in Eq. ~54!, i.e., consider the
variational evolution equation@compare to Eq.~14!#

2vL1u
0 1kL2u

0 2L0
05«b cos~u2D1c0!, ~55!

where L0[L(2vUu ,kUu ,U,q) and L0,1,2
0

[Lu,ut ,ux(2vUu ,kUu ,U,q). Equation ~55! is an
ordinary differential equation~with respect tou! in which T
and X enter as fixed parameters. Therefore, we treat
zeroth-order approximation via the Hamiltonian formalis
We introduceU̇[2vUu , write L05L(U̇,2kU̇/v,U,q),
define the generalized momentum

P[]L0/]U̇5L1
02~k/v!L2

0, ~56!

use Eq.~56! to expressU̇5F(P,U,k/v,q), and construct
the Hamiltonian

H~P,U,X,T,u!5U̇P2L0

5FP2L02«bU cos@u2D1c0#.

~57!

Note that, in contrast to the nonlinear oscillator@see Eq.
~15!#, in addition toq we have another slow parameterk/v in
the Hamiltonian. In order to shorten the notation, we sh
denote the set$q,k/v% by a single letterQ. Next, we trans-
form from P andU to the action-angle variablesI andu of
the unperturbed problem described by Eq.~57! with «50,
i.e., writeP5P(u,I ,Q) andU5U(u,I ,Q), where

I ~A,Q!5~2p!21 R P* dU5I 12~k/v!I 2 . ~58!

HereP*5P* (U,A,Q) is the solution of@compare with Eq.
~16! in Sec. III#

FP2L~F,2kF/v,U,q!5A ~59!

and

I 1,2~A,Q!5~2p!21 R L1,2
0 ~F,2kF/v,U,q!dU, ~60!

whereF is evaluated atP5P* . Note that, as in Sec. III, we
identify the fast angle variableu in our problem with the
canonical angle variable of the unperturbed case with fi
Q. Finally, Eq. ~58! yields A5A(I ,Q), so, in terms of the
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action-angle variables, the Hamiltonian~57! becomes@com-
pare with Eq.~17! for the driven oscillator problem#

H~u,I ,Q,X,T!5A~ I ,Q!2«bU~u,I ,Q!cos@u2D1c0#.
~61!

Then, by making the usual single resonance approxima
in Eq. ~61!, we find that it yields the desired form o
U5U(u,I ,Q), which is periodic with respect tou, but also
includes the slow variablesX,T via ut , ux , I , andQ. This
completes our zeroth-order solution.

Now we return to the exact variational principle~53!,
where, in view of the above, we use trial functions of for
@compare with Eq.~20!#

U~u,X,T!5U0@u,I ~X,T!,Q~X,T!#1«U1~u,X,T!1O~«2!,
~62!

with U0 being the zeroth-order solution. Following the ste
of Sec. III, one finds that, to first order in«, U0(u,I ,Q) is
the only object necessary for calculating the avera
Lagrangian in the driven nonlinear wave problem. Th
to O~«!, L5L(2vUu

01«UT8
0,kUu

01«Ux8
0,U0,q)'L0

1«(L1
0UT8

01L2
0UX8

0) and, by averaging overu, we have
^L&5^L0&1«(DTI 1

01DXI 2
01^U T

0L 1
0&1^U X

0L 2
0&). Further-

more, on averaging in Eq. ~59!, one finds
^L0&52vI 1

01kI 2
02A and, by choosingA(X,T) as the de-

pendent variable instead ofI (X,T), one can write
^U T,X

0 L 1,2
0 &5AT,X^U A

0L 1,2
0 &1(QQT,X^U Q

0 L 1,2
0 &. Combin-

ing all these results, one obtains the final expression for
averaged Lagrangian toO~«! in our problem@compare with
Eq. ~26!#:

^L&5^L1«bU cos~u2D1c0!&

5~2v1«DT!I 11~k1«Dx!I 22A1«@AT^UAL1&

1AX^UAL2&1a1ab cos~D1u02c0!#. ~63!

Here the averages are taken with respect tou between 0
and 2p andU0 is used everywhere, but we omit the ze
superscripts for simplicity. Also, in Eq. ~63!,
a5(Q[QT^UQL1&1QX^UQL2&] and, as before,a and u0
are the absolute value and the complex phase of the co
cient a1 in the Fourier expansion U0(u,I ,Q)5
(nan(I ,Q)exp(inu).

At this stage, we observe that one can write^L&
5L[A(X,T),D(X,T),T,X], i.e., u(x,t) in our original varia-
tional principle is now represented by the slow functio
A(X,T) and D(X,T) in the averaged variational principl
~53!, which becomes

dE E L@A~X,T!,D~X,T!,X,T#dX dT50. ~64!

By using the Lagrangian~63! in Eq. ~64! and taking the
variation with respect toA andD, we arrive at the system o
evolution equations@compare with Eqs.~31! and ~32!#

I 1AAt1I 2AAx5b2«ab sin F, ~65!

I 1AF t1I 2AFx511vI 1A2kI2A2g2«aAb cosF, ~66!

whereF5D1u02c0 and, similarly to Eq.~33!,
n

s

d
,

e

ffi-

b52(
Q

~ I 1QQt1I 2QQx!,

g5(
Q

@ I 1A~Qtu0Q2c0t!1I 2A~Qxu0Q2c0x!#

2(
0

@Qt$U,L1%1Qx$U,L2%#, ~67!

with the averaged Poisson brackets defined
$ f ,g%[^ f QgA2 f AgQ&.

Equations~65! and ~66! comprise a set of partial differ
ential equations, which can be solved along the characte
tics, originating on the boundary of the region of intere
~i.e., on thex axis att5t1!, and we recall thatu, ut , ux , and
thereforeA are assumed to be small on this boundary. W
define the characteristics via

dt/dt51, dx/dt5I2A /I1A , ~68!

subject to the initial conditions t(t50)5t1 , and
x(t50)5x1 , wheret is the parameter along a characteris
and x1 is an arbitrary position on the boundary. Then Eq
~65! and ~66! can be rewritten as

I 1AAt5b2«ab sinF, ~69!

I 1AFt511vI 1A2kI2A2g2«aAb cosF. ~70!

This is a system of ordinary differential equations forA and
F in the region of the (x,t) plane accessible by the chara
teristics originating on the boundary~theaccessible regionin
the following!.

Now we observe that Eqs.~69! and ~70! have the same
form as the slow evolution equations~31! and ~32! in the
driven oscillator problem. Consequently, we can apply
the results of the theory of the dynamic autoresonance
rectly to the driven nonlinear wave problem. This observ
tion leads to the following conclusions.

~a! Since, by assumption, the nonlinear wave is negligi
on the boundary, its efficient excitation along a given ch
acteristic takes place only in the vicinity of the pointt0,
where the functionD(v,k,q,A)[11vI 1A2kI2A vanishes.
On the other hand, in the absence of the pump and for fi
q; D(V,K,q,A)50 is the dispersion relation for th
traveling-wave solution of the unperturbed, fixed parame
problem characterized by frequencyV and wave vectorK
@17#. Therefore, the excitation of the daughter wave proce
in the vicinity of the region in the (x,t) plane, where the
wave resonates with the pump, i.e.,V5v(x,t) and
K5k(x,t). Furthermore, assuming that the initial excitatio
stage islinear, the dispersion relationD(V,K,q,A)50 is
independent ofA and thus the wave excitation takes place
the vicinity of the resonanceline D[v(x,t),k(x,t),q(x,t)]
50 in the (x,t) plane.

~b! In the initial excitation stage, as one approaches
resonance line, the wave becomes strongly trapped into
resonance. In other words, the phase mismatchF becomes
near either 0 orp~mod 2p! in the vicinity of the resonance
line.
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55 1937AUTORESONANT EXCITATION AND EVOLUTION OF . . .
~c! If one moves further along the characteristics from
resonant line, under certain conditions~see below!, the
daughter wave enters the nonlinear autoresonant intera
stage in which

D~v,k,p,A!511vI 1A2kI2A'0. ~71!

ThenD(v,k,p,A) nearly vanishes in the accessible regi
beyond the resonance line, i.e., the wave is in an appr
mate resonanceV'v(x,t) andK'k(x,t) inside the acces
sible region. Note that Eq.~71! can be viewed as analge-
braic equation forA5A(x,t), while F'0 ~or p!. Thus we
have obtained an approximate smooth solution for
daughter wave in the entire autoresonant region.

~d! The solutions forA andF described in~c! are only
approximations to the autoresonant solutions~the analogs of
Ā andF̄ in the DAR! and the characteristic oscillations ca
now be added in the autoresonant region. These small o
lations are found, similarly to the driven oscillator case,
solving the system@compare with Eqs.~36!#

I 1A~dA!t5«abdF,

I 1A~dF!t5~vI 1AA2kI2AA!dA ~72!

along the characteristics. One can see that if@compare with
Eq. ~38!#

n25«ab~kI2AA2vI 1AA!~ I 1A!22 ~73!

is positive, we have stable oscillations ofF nearp~mod 2p!;
otherwise the oscillations are around 0~mod 2p!, provided,
of course, that the initial phase locking stage led to a pro
value ofF ~i.e., 0 orp, respectively!.

~e! Finally, the conditions guaranteeing the existence
the stable autoresonant evolution of the driven nonlin
wave, are the same moderate nonlinearity and adiabat
inequalities~42! and ~47!, where now the nonlinearity pa
rameter iss5AukI2AA2vI 1AAuuvI 1Au21.

We conclude this section by presenting an example
autoresonant excitation and evolution of the solution of
driven sine-Gordon equation

utt2c2uxx1v0
2sin u5«b cosc. ~74!

The unperturbed Lagrangian in this case
L5 1

2 (u t
22c2u x

2)1v0
2 cosu. Equation ~56! yields

P[[12(ck/v)2] U̇ and Eq.~59! becomes

1
2P

2@12~ck/v!2#212v0
2cosU5A. ~75!

This is the same as in the nonlinear pendulum case of Se
if one replaces 12~ck/v!2 in Eq. ~75! by unity. By using Eq.
~75!, we find P* 25[12(ck/v)2] ~2A12v0

2 cosU! and
therefore@see the definition in Eq.~60!#

I 152
v

~v22c2k2!1/2
J~k!, ~76!

whereJ~k! represents the action of the nonlinear pendul
of energy A @see the first of Eqs.~49!# and, as before
k51

2~11A/v0
2!. Similarly,
e
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c2k

~v22c2k2!1/2
J~k!, ~77!

while @see the second of Eqs.~49!#

I 1A52
v

~v22c2k2!1/2
JA~k!52

2vF~p/2;k!

pv0~v22c2k2!1/2

~78!

and

I 2A52
c2k

~v22c2k2!1/2
JA~k!52

2c2kF~p/2;k!

pv0~v22c2k2!1/2
.

~79!

Simple calculations show that functiona in the evolution
equations~69! and ~70! for the driven sine-Gordon equatio
case is given by the same equation~50! as in Sec. III and,
again,u052p/2. However, now the factorsb andg do not
vanish because of the presence ofk/v in their definitions.
Nevertheless, as mentioned in Sec. III, these factors can
slightly shift the average componentsĀ and F̄ along the
characteristics@see Eqs.~45! and ~46!#, leaving, at the same
time, the oscillatory partsdA and dF of the solution un-
changed. The correction toĀ is relatively unimportant and
consequently, focusing on the slow evolution of the ene
of the daughter wave, we shall neglectb andg in Eqs.~69!
and ~70! and rewrite the full system of ordinary differentia
equations describing the driven Sine-Gordon problem as

dt/dt51,

dx/dt5c2k/v,
~80!

dA/dt51«abV0~12c2k2/v2!1/2sinF,

dF/dt52~12c2k2/v2!1/2@V02~v22c2k2!1/2#

1«aAbV0~12c2k2/v2!1/2cosF,

whereV0(A)51/JA is the frequency of the unperturbed no
linear pendulum of energyA.

At this point we proceed to our numerical example. W
consider the initial-value problem in which the solutionu
of the driven sine-Gordon equation is a given, sufficien
small function of x at t5t1 and study the evolution o
u in the semiplane (x,t.t1) for the case when
c(x,t)5 k̃[x2x2/2X0]2ṽ[ t2t2/2T0], where ṽ,k̃,T0 ,X0
are constants. The frequency and the wave vector of
pump wave in this case arev5ṽ(12t/T0) and
k5 k̃(12x/X0), respectively, and we shall use the valu
v0/ṽ51, ck̃/ṽ5220.5, T05103, andX05103 in the calcula-
tions. Figure 3 shows the geometry and boundaries of
example in the (t,x) plane. The dotted lines in the figure a
the linear resonance line~a hyperbola! on which

~v22c2k2!5V0
2uA→215v0

2 ~81!

and the linev5ck, i.e., t5T0(12ck̃/ṽ)1(ck̃/ṽ)T0X 0
21x.

Finally, we uset152400 and show the characteristics~the
solid lines in Fig. 3! starting at ten different values ofx
between2400 and 500. Since the autoresonance relat
~71! in our case is
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1938 55L. FRIEDLAND
~v22c2k2!5V0
2~Ā!, ~82!

we expect the autoresonance to proceed via the trapping
the resonance near the resonant hyperbola~81! and continue
beyond this line, but not past theṽ5ck̃ line in Fig. 3, where
Ā→1 ~V0→0! and the autoresonance conditions are violat
The departure from the autoresonance in our example
place at the end points of the characteristics shown in Fig
The results of the solution of Eqs.~80! for the wave energyA
are presented in Fig. 4. The figure shows the dependenc
A along the aforementioned ten characteristics. We useA5
20.986 andF52c2p/2 at the initial integration points an
the valuesb51 and«50.03. The lines in the (t,x) plane in
Fig. 4 are the characteristics themselves. One can see th
expected, the efficient autoresonant excitation of the non

FIG. 3. Geometry and boundaries in the numerical example
the driven sine-Gordon equation. The linear resonance andṽ5ck̃
lines represented by dots. The solid lines show the characteristi
the (x,t) plane originating att52400 and ten different points on
the x axis.

FIG. 4. Space-time dependence of the slow energyA of the
daughter wave along the characteristics in Fig. 3. The charact
tics themselves are also shown in the (x,t) plane. The circles indi-
cate the linear resonance line. Note that the trapping into reson
and the subsequent autoresonant increase of the energy o
driven wave does not take place along the characteristic origina
at x52400 ~i.e., slightly beyond the linear resonance line!.
to

.
ok
3.

of

, as
-

ear wave proceeds in the vicinity of the linear resonance@the
line passing trough the circles in the (t,x) plane in Fig. 4#.
As the wave moves further into the autoresonant interac
region, the energyA performs characteristic autoresonant o
cillations around a monotonically increasing average va
Ā. We see that the overall dependence ofA along the char-
acteristics starting atx>2300 is similar to that in the DAR
case~see Fig. 2!. The automatic increase ofĀ, similar to the
DAR, guarantees the satisfaction of the nonlinear resona
condition ~82!. When Ā approaches unity, one expects
depart from the autoresonance. This departure is manife
via the phase detrapping, which, in our example, takes p
at the end points of the characteristics in Figs. 3 and 4.
discontinue the calculations at these points. Note also
the characteristic starting att152400 andx52400 in Fig. 4
does not cross the resonance line. Therefore, no trapping
the resonance and subsequent autoresonant interaction
place along this characteristic, as can be seen in the fig
We conclude our illustration of autoresonant solutions of
sine-Gordon equation by presenting another numerical
ample with the same parameters as in Fig. 4, but the nega
sign of k̃, i.e., for the pump wave propagating in the negat
x direction. This case is shown in Fig. 5.

V. CONCLUSION

We have developed a theory of multidimensional a
toresonance of driven nonlinear waves in systems with a
batically varying parameters. The theory is applicable to
broad class of resonantly perturbed nonlinear waves
scribed by the variational principle.

Our theory is based on the analysis of the reduced sys
of slow evolution equations found from the averaged var
tional principle. As a starting point, we have developed
averaging procedure leading to the averaged variational p
ciple in the dynamic autoresonance. The trapping into
resonance and the conditions for the DAR in the system w
discussed and formed the bases for a generalization to
linear waves. The theory was illustrated by an example o
nonlinear pendulum perturbed by an oscillation with
slowly varying frequency.

f
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FIG. 5. Space-time dependence of the slow energy of the da
ter wave in the example with the same parameters as in Fig. 4
the pump wave propagating in the negativex direction.
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55 1939AUTORESONANT EXCITATION AND EVOLUTION OF . . .
Using the main ideas of the averaged variational appro
developed in the DAR problem, we have also constructed
averaged variational principle for studying resonant exc
tion and subsequent evolution of nonlinear waves in slo
space-time varying media. We have considered the prob
of autoresonance arising when a prescribed large-ampli
pump wave resonantly excites a nonlinear daughter w
inside the region of interests. The reduced system of s
evolution equations in this problem comprises a set of fi
order partial differential equations that can be solved alo
characteristics originating on the boundary where the dau
ter wave is negligible. One finds that, along these charac
istics, the system of slow equations describing the problem
similar to that of the DAR. This similarity allowed us t
apply all the results of the DAR directly to the problem
the multidimensional autoresonance in nonlinear wave s
tems. The theory was illustrated by a two-dimensional
merical example of a driven sine-Gordon equation.

We conclude this section by making general remarks
garding the averaging method applied above. The metho
based on the assumption of a resonant excitation of a qu
periodic nonlinear wave such that its local wavelength
short compared to the scale length and frequency large c
pared to the time rate that characterize the variation of
macroscopic parameters of the system. A similar assump
is used in the eikonal approximation for linear wave prop
gation problems in adiabatically space-time varying me
@21#. The aforementioned scale difference means the ex
ence of a small parameter in the problem and the avera
method comprises a perturbation analysis in terms of
parameter. Remarkably, the theory reveals the underly
Hamiltonian structure of resonantly driven nonlinear trav
h
e
-
y
m
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e
w
t-
g
h-
r-
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-
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e
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ing waves described by the variational principle. This stru
ture is seen when, locally~in the zeroth-order of the pertur
bation scheme!, one associates the wave problem with that
the evolution of a characteristic driven dynamical syste
Then, in the first order, one obtains equations describing
space-time evolution of the slow variables of the zero
order dynamical problem such as the energy and the ph
mismatch. As in Whitham’s theory of free modulations@17#,
these slow evolution equations can be regarded as gene
zations of Hamilton’s equations in dynamics to the asso
ated problem of evolution of the adiabatically varying no
linear wave. The different ingredient in the present theory
the existence of the continuous phase locking between
pump and daughter waves. This intrinsic phase locking in
system has its origin in a similar dynamical problem~DAR!
and allows one to generalize the averaging method to
autoresonant wave interactions. Finally, one major advan
of the averaged variational approach developed in this w
belongs to numerical applications. As illustrated by our e
amples in Sec. IV, the theory allows one to calculate
characteristic parameters of a resonantly excited nonlin
wave in space-time regions large compared to its wavelen
and period and thus to avoid numerical difficulties associa
with the existence of the fast scales in the original system
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